Noncircular lobed journal bearing performance, in comparison with circular types, depends on various design parameters such as tilt and mount angles. Mounting orientation of this kind of bearings with respect to machine frame (mount angle) and also the way of setting their lobes with respect to each other (tilt angle), can change the bearings configuration and, as a result, their performance. In present study the thermo-hydrodynamic performance of noncircular two, three and four lobed journal bearings for different values of tilt and mount angles, using generalized differential quadrature (GDQ) method, are investigated. The results show that the thermal effects on these bearings performance are considerable and that the thermal consideration makes the results closer to real performance situations. The results of bearings performances due to rise in temperature in rotor, lubricant fluid and bearing shell, when compared to their isothermal conditions, show that viscosity of lubricant as well as load carrying capacity of bearings are decreased, depending on tilt and mount angles, especially in case of two lobed bearings. The results also show that the effects of tilt and mount angles on bearing performance are periodic and so it is possible to select these angles suitably for bearings to be optimum.