در این تحقیق به مقایسه کارایی دو روش پیش بینی شبکه عصبی مصنوعی (ANN) و روش سنتی خودرگرسیون میانگین متحرک انباشته (ARIMA) در پیش بینی قیمت سهام در بازار سهام ایران پرداخته شده است. بدین منظور 2 شرکت دارویی البرز دارو و جام دارو انتخاب شده و مدل ARIMA و مدل شبکه عصبی مصنوعی برای هر دو شرکت تخمین زده شد. به منظور تخمین مدل شبکه عصبی مصنوعی، متغیر قیمت سهام به عنوان متغیر وابسته و متغیر های حجم معاملات سهام، شاخص صنعت دارو، قیمت نفت اوپک، نرخ ارز و قیمت طلا به عنوان متغیر های مستقل در نظر گرفته شد. برای مقایسه دو مدل نیز از معیارهای MSE, RMSE, MAD, R2 و MAPE استفاده شد. به منظور تخمین مدل رگرسیون پیش بینی قیمت سهام از فرآیند خود رگرسیون میانگین متحرک انباشته (ARIMA) استفاده و تخمین ضرایب مدل با استفاده از نرم افزار آماری EVIEWS انجام شده و مدل شبکه عصبی مصنوعی(ANN) مناسب برای پیش بینی قیمت سهام نیز با استفاده از نرم افزار MATLAB ساخته شد. نتایج تحقیق نشان داد که فرضیه تحقیق در صورت تأثیر متغیر های کلان اقتصادی بر روی قیمت سهام صحیح بوده و مدل شبکه عصبی مصنوعی (ANN) پیش بینی بهتری از قیمت سهام در بازار سهام ایران در مقایسه با روش خود رگرسیون میانگین متحرک انباشته (ARIMA) دارد.